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ABSTRACT
Most previous approaches for analyzing food images have relied
on extensively annotated datasets, resulting in significant human
labeling expenses due to the varied and intricate nature of such
images. Inspired by the effectiveness of contrastive self-supervised
methods in utilizing unlabelled data, weiqing explore leveraging
these techniques on unlabelled food images. In contrastive self-
supervised methods, two views are randomly generated from an
image by data augmentations. However, regarding food images, the
two views tend to contain similar informative contents, causing
large mutual information, which impedes the efficacy of contrastive
self-supervised learning. To address this problem, we propose Fea-
ture Suppressed Contrast (FeaSC) to reduce mutual information
between views. As the similar contents of the two views are salient
or highly responsive in the feature map, the proposed FeaSC uses
a response-aware scheme to localize salient features in an unsu-
pervised manner. By suppressing some salient features in one view
while leaving another contrast view unchanged, the mutual in-
formation between the two views is reduced, thereby enhancing
the effectiveness of contrast learning for self-supervised food pre-
training. As a plug-and-play module, the proposed method consis-
tently improves BYOL and SimSiam by 1.70% ∼ 6.69% classification
accuracy on four publicly available food recognition datasets. Supe-
rior results have also been achieved on downstream segmentation
tasks, demonstrating the effectiveness of the proposed method.
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1 INTRODUCTION
Food image analysis involves the utilization of visual data to de-
termine food attributes, including quality, quantity, composition,
and nutrient content. It has the potential to contribute to various
applications, such as dietary assessment [21, 38], food inspection
[5, 11], food recognition [29, 48], and food recommendation [26].
Furthermore, it raises awareness regarding eating habits, reduces
food waste, promotes food diversity, and ensures food safety. The
majority of food image analysis methods [29, 48] rely on large-
scale annotated datasets. However, it is challenging to annotate
such large-scale datasets due to the diverse and complex food im-
ages across different regions, influenced by natural conditions and
cultural disparities. In certain cultures, foods with the same name
may be prepared differently, causing difficulties in the annotation
process. Therefore, utilizing unlabelled food images for analysis is
significant and valuable in the multimedia community.

Self-supervised learning methods, specifically contrastive self-
supervised methods [6, 12, 16, 18], have provided a promising solu-
tion for utilizing unlabelled data. In the realm of food image analysis,
self-supervised learning presents a novel perspective on solving its
challenges. The concept behind contrastive self-supervised meth-
ods is to compare different views of a single image in order to derive
invariant feature representations. The methodology’s fundamental
principle is to enhance feature consistency between different views
of the same sample whilst retaining discrepancies between different
samples. Pre-training on ImageNet dataset enables these methods to
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Food Images (Greek Salad)

ImageNet Images (Appenzeller)

Figure 1: Some examples of views sampled from Appen-
zeller images and Greek Salad images. The views of Appen-
zeller easily capture different object parts, while the views
of Greek Salad tend to contain similar informative contents.

achieve comparable performance to supervised learning techniques.
Currently, self-supervised learning mainly focuses on ImageNet
images, and there has been a conspicuous scarcity of analysis into
self-supervised learning concerning food images. Therefore, this
paper aims to explore self-supervised learning on food images.

Compared with ImageNet images, food images include a variety
of similar ingredients stacked together. As shown in Figure 1, there
are different semantic parts (e.g., head and body) in ’Appenzeller’,
while lots of sliced material (e.g., cucumbers and cheese), fruit and
vegetable are stacked together in Greek Salad’. In contrastive self-
supervised methods, each image is randomly sampled to form two
different views by data transformation operations. On ImageNet
images, the views easily capture different object parts, while the
views of food images tend to contain similar informative contents.
As stated in [24, 37], good views are made by reducing the mutual
information between themwhile keeping task-relevant information
intact. We think two views with similar informative contents keep
task-relevant information, however, their similarity result in large
mutual information between them, which prevents effective con-
trastive self-supervised learning. Based on the above analyse, we
argue that it is feasible to reduce some similar informative contents
between two views for contrastive self-supervised food learning.

To this end, based on contrastive self-supervised learning, we pro-
pose Feature-Suppressed Contrast (FeaSC) to boost self-supervised
food pre-training via excluding comparisons of similar informative
contents. We observe that the similar contents of the two views
are salient or highly responsive in feature map, as shown in Figure
2. Here, we use an unsupervised approach, similar to [14, 34, 41],
instead of the category-dependent supervised approach of CMA
[13, 33, 46]. Meanwhile, the view with some salient feature sup-
pressed still maintains task-relevant information [48], since the
view of food images contains many informative contents stacked
together. Therefore, we introduce a response-aware scheme to local-
ize salient features in an unsupervised manner. The proposed FeaSC
suppresses some salient features in one view, while leaving another

View 1

View 2

Image

Low Response High Response

Figure 2: Some examples of images and corresponding views.
The similar contents in the two views of the same image are
both highly responsive.

contrast view unchanged. In this way, the mutual information be-
tween the two views is reduced, which enhances the effectiveness
of contrast learning for self-supervised food pre-training.

As a plug-and-play method, it can be easily applied to differ-
ent contrastive self-supervised frameworks. The proposed method
consistently improves BYOL [16], SimSiam [12] by 1.70% ∼ 6.69%
classification accuracy on ETHZ Food-101 [4], Vireo Food-172 [8],
ISIA Food-200 [27], and ISIA Food-500 [28], under linear evalua-
tions. Notably, when 10% training data is employed under linear
evaluations, performance improvements of our method are 4.37%
∼ 20.96% on the four datasets. Moreover, superior results are also
been achieved on downstream food segmentation tasks.

The main contributions of this paper are summarized as:
• We propose a feature-suppressed contrast method to boost
self-supervised food pre-training via excluding comparisons
of similar informative contents.

• We further propose a response-aware localization scheme
to improve the efficiency of feature suppression.

• Extensive experimental evaluations on several public food
downstream tasks demonstrate the effectiveness of the pro-
posed method.

2 RELATEDWORKS
2.1 Contrastive Self-Supervised Learning
As a form of unsupervised learning, contrastive self-supervised
methods [7, 10, 16, 18, 36, 44] have demonstrated superior abilities in
learning generalizable representations. The core idea of contrastive
self-supervised methods is to maximize feature consistency under
different views from the same instance, while pushing features of
different instances apart. According to whether negative instances
are used, contrastive self-supervied methods are divided into two
categories.

One of them is to compare different views sampled from both
positive instances and negative instances with the InfoNCE loss
[31]. In these methods, negative instances play a critical role and are
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carefully designed. Chen et al. [10] point out that contrastive learn-
ing benefits from a large number of instances in a batch comparison
and composition of data augmentations. He et al. [18] leverage a dy-
namic dictionary with a queue and a moving-averaged encoder to
provide consistent representations of negative instances on-the-fly.
These methods only update the representation of samples from the
current batch, possibly discarding the useful information from the
past batches. Alternatively, He et al. [19] propose to directly learn
a set of negative adversaries playing against the self-trained repre-
sentation. In addition, some methods combine contrastive learning
with clustering [6, 23] or adversarial training [15, 22].

Another category is to compare different views sampled from
the same instance. One crucial issue in this kind of method is model
collapse, where all data is mapped to the same representation. Grill
et al. [16] first rely only on positive pairs for contrast learning
via a momentum encoder and a stop-gradient operation. Chen
et al. [12] conclude that the stop-gradient operation is critical to
preventingmode collapse. In the above twoworks, the asymmetrical
network architecture is implemented with a unique predictor, and
the parameter updates involve a stop-gradient operation or with
a momentum encoder in an asymmetrical manner. Different from
them, some works employ symmetric architectures and parameter
updates via redundancy reduction [45], feature decorrelation [20],
and variance-invariance covariance regularization [3]. In this paper,
based on these methods, we propose a feature-suppressed contrast
method for self-supervised food pre-training.

2.2 Data Transformation
The commonly used data transformation (augmentation) involves
spatial/geometric transformation such as cropping and resizing,
and appearance transformation such as color distortion and Gauss-
ian blur. In contrast self-supervised learning, Chen et al. [10] point
out that it is crucial to composite multiple data augmentation op-
erations. Further, Tian et al. [37] analyze the influence of different
views of data transformation, and argue that a better pre-training
model can be obtained by reducing the mutual information be-
tween views while keeping task-relevant information intact. Peng
et al. [32] propose ContrastiveCrop to generate better views. And
some works [1, 35] propose to mask views on image levels under
the contrast learning framework. In addition, some self-supervised
methods of masked image modeling [2, 17, 40, 43, 47] randomly
mask out some input image tokens and then recover the masked
content by conditioning on the visible context. The data transfor-
mation of the above works is on image levels. Different from these
works, we introduce data transformation on the feature map, which
is effective for self-supervised food pre-training.

2.3 Food Pre-training
The majority of food-related works use a model pre-trained on Im-
ageNet dataset to initialize their models, such as food recognition
[28, 48] and food category-ingredient prediction [39]. This is mainly
because the fact that there are no food pre-training models available.
Recently, Min et al. [29] propose a large-scale dataset of food recog-
nition and demonstrate that a pre-trained model on this dataset
brings more significant benefits for food-related downstream tasks
than the model pre-trained on ImageNet dataset. This gives us a

message that it is meaningful to study the food pre-trained model
on a large food dataset. Therefore, in this paper, we study the food
pre-trained model on this large dataset in a self-supervised man-
ner. We hope our explorations are helpful to provide food-related
research with a better pre-trained model.

3 THE PROPOSED METHOD
The proposed FeaSC suppresses informative features in one view
to avoid comparisons of similar contents between two different
views. As shown in Figure 3, the proposed method consists of
two branches that process two different views randomly sampled
from the input image. The top branch is commonly used, while
the bottom branch is transformed by a feature-suppressed network
that suppresses informative features. In this section, we first revisit
contrastive self-supervised learning and then introduce how to
suppress informative features and calculate the involved contrastive
loss. Finally, we discuss the favorable properties of our method for
better understanding.

3.1 Revisiting Contrastive Self-Supervised
Learning

Contrastive self-supervised learning aims to learn generalized rep-
resentations that are invariant to data augmentations by attracting
positive pairs and repelling negative pairs in a latent space. Typi-
cally, contrastive self-supervised methods are based on a siamese
framework. Next, we will review contrastive self-supervised meth-
ods from the following three aspects: feature extraction, feature
transformation, feature contrast.

Feature Extraction. Given a set of images D, an image 𝑥 sam-
pled fromD to produce two views 𝑣 ≜ 𝑡 (𝑥) and 𝑣 ′ ≜ 𝑡 ′(𝑥) by using
random data transformations (i.e., compositions of image augmen-
tations), where 𝑡 () and 𝑡 ′() are two different data transformations
with their specific image augmentations. Then the two views 𝑣 and
𝑣 ′ are inputted an encoder network 𝑓 (; ) to obtain their feature map
𝐹 and 𝐹 ′, respectively, which are formalized as follows:{

𝐹 = 𝑓 (𝑣 ;\ )
𝐹 ′ = 𝑓 (𝑣 ′;\ ′) (1)

where \ and \ ′ are parameters of the encoder network. The settings
of two parameters differ in different contrastive self-supervised
methods, for example, they are the same in SimSiam [12], Barlow
twins [45] and VICreg [3], while they are different in BYOL [16]
and DINO [7].

Feature Transformation. Subsequently, the two feature map
𝐹 and 𝐹 ′ are inputted into a transformation network to get their
feature representations 𝑧 and 𝑧′, respectively. This process is for-
malized as follows: {

𝑧 = 𝑔(𝐹 ; b)
𝑧′ = 𝑔′(𝐹 ′; b ′) (2)

where b and b ′ are parameters of the transformation network 𝑔(; )
and 𝑔′(; ), respectively. The architectures of the two transformation
network differ in different contrastive self-supervised methods. In
DINO, the architectures and parameters of the two transformation
network are the same, which contain a pooling operation, a MLP
projection layer and a projector. In Barlow twins and VICreg, the
architectures and parameters of the two transformation network are



MM’23, , October 29 – November 3, 2023, Ottawa, Canada. Xinda Liu∗ , Yaohui Zhu∗ , Linhu Liu, Jiang Tian, and Lili Wang �

𝑡𝑡

𝑡𝑡𝑡

𝐷𝐷
𝑧𝑧,𝑧𝑧𝑡

+
𝜆𝜆𝐷𝐷

(𝑧𝑧,𝑧𝑧)

𝐹𝐹

𝐹𝐹𝑡

Transformation Network

Transformation Network

𝑥𝑥

𝑣𝑣

Encoder

𝑣𝑣𝑡

Encoder

𝑀𝑀

Feature-Suppressed Transformation Network

Pooling

Response-aware 
Location

Feature-Suppressed Transformation

�𝐹𝐹

𝑧𝑧

𝑧𝑧𝑡

�̂�𝑧

⨀
Projector

Figure 3: The pipeline of the proposed FeaSC. Two different views are randomly sampled from an image, and then they are
respectively inputted into an encoder to obtain their feature map via two branches. The feature map in bottom branch inputs
a transformation network and a feature-suppressed transformation network to obtain two feature representations, which
contrast a feature representation generated from the top branch.

also the same, but they contain a pooling operation and a projector.
In BYOL and SimSiam, one transformation network contains a
pooling operation and a MLP projection layer, another one contains
a pooling operation, a MLP projection layer, and a projector.

Feature Contrast. The final optimization goal is to minimize
distance between feature representations 𝑧 and 𝑧′, namely:

L = 𝐷 (𝑧, 𝑧′) (3)

The optimization loss is slightly different in different contrastive
self-supervised methods. In DINO, the optimization goal is a cross-
entropy loss. In BYOL, the goal is mean-squared euclidean distance
between normalized 𝑧 and 𝑧′. In SimSiam, the goal is negative
cosine similarity between 𝑧 and 𝑧′.

3.2 Feature-Suppressed Contrast
Feature-suppressed contrast includes three key components response-
aware location, feature-suppressed transformation, and the final
contrast module. The response-aware localization module identifies
the salient regions of the feature map. According to the localization
of salient regions, the feature-suppressed transformation module
modifies the feature map to suppressed representations, which
are used in final contrast module. Next, we introduce the three
components.

Response-Aware Location.The salient contents can be located
with high class responses of feature map. Given a feature map
𝐹 ∈ R𝐶×𝑊 ×𝐻 , where 𝐶 , 𝐻 , and𝑊 denote the number of channels,
height, and width, respectively, the response values are summed
over the channel dimension with Eq. 4,

𝑀𝑖, 𝑗 =

𝐶∑︁
𝑘=1

𝐹𝑖, 𝑗,𝑘 (4)

where𝑀𝑖, 𝑗 represents the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column in𝑀 ∈ R𝑊 ×𝐻 .
The areas marked with high value in the response map𝑀 indicate
salient regions. Therefore, these regions can be located by utilizing
such high values. A certain percentile [ ∈ [0, 1] in𝑀 is used as a
threshold. Supposing the value of the percentile is 𝜔 , the location
of regions to be suppressed is calculated as:

𝐿𝑜𝑐𝑖, 𝑗 =

{
1, 𝑀𝑖, 𝑗 ≥ 𝜔

0, 𝑀𝑖, 𝑗 ≤ 𝜔
(5)

where 𝑀𝑖, 𝑗 ∈ 𝑀 . To maintain the stability of the training, we
use a ramp-up function to determine the percentage [ of feature
suppression. The [ starts from a small value to a fixed value 𝛼 , and
its formulation is as follows:

[ =

 𝛼 ∗ exp
(
−5

(
1 − 𝑒

𝛽

)2)
, 𝑒 < 𝛽

𝛼, 𝑒 ≥ 𝛽

(6)

where 𝑒 denotes the current epoch during training phase, 𝛼 is a
scalar, and 𝛽 is an integer.

At the begin of training, the capacity of self-supervised model is
not strong. A small value of [ can reduce tough contrast between
some views to improve effective learning of a weak self-supervised
model. After the capacity of self-supervised model become enough
strong, a big value of [ can encourage the model to mine other
informative features.

Feature-SuppressedTransformation.The location of the salient
regions 𝐿𝑜𝑐𝑖, 𝑗 is used to suppress the corresponding features. The
formulation of this process is defined as follows:

𝐹𝑖, 𝑗,𝑘 = (1 − 𝐿𝑜𝑐𝑖, 𝑗 ) ⊙ 𝐹𝑖, 𝑗,𝑘 (7)

where ⊙ means an element-wise multiplication, and 𝐹 is the sup-
pressed feature map. Then suppressed feature map 𝐹 is pooled into
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a feature vector. Subsequently, the feature vector inputs a projector
to get feature representations 𝑧.

The feature representations 𝑧 lack some salient information since
the highly responsive features are suppressed in the feature map.
The feature-suppressed transformation is carried out in one view,
while another view does not. Therefore, the comparisons of salient
similar contents between the two views are avoided, achieving a
reduction in mutual information between the two views. Moreover,
comparing different contents between the two views is more likely
to encourage the model to mine other distinctive and informative
features in the suppressed views.

Final Contrast. The final contrast loss consists of two terms,
which is defined as follows:

L = 𝐷 (𝑧, 𝑧′) + _𝐷 (𝑧, 𝑧) (8)

where 𝐷 (𝑧, 𝑧′) is an original contrast loss, 𝐷 (𝑧, 𝑧) is a contrast loss
on suppressed features, and _ is a hyper-parameter to balance the
two terms. By preserving the original contrast loss, more precise re-
sponsive localization can be retained, facilitating effective contrast
learning for food pre-training model.

3.3 Discussions
Relation with reducing mutual information. Mutual informa-
tion between 𝑧 and 𝑧′ can be calculated using the following formula:

I(𝑧, 𝑧′) = H(𝑧) − H (𝑧 |𝑧′) = H(𝑧) + E𝑝 log𝑝 (𝑧 |𝑧′)
≥ H (𝑧) + E𝑝 log𝑞(𝑧 |𝑧′)
= H(𝑧) − 1/2 logE𝑝 [(𝑧 − 𝑧′)2] −𝐶

(9)

H(𝑧) is the entropy of 𝑧, andH(𝑧 |𝑧′) is the conditional entropy of 𝑧
given 𝑧′. The inequality in the second line of the formula is derived
from Gibbs’ inequality. Letting 𝑞(𝑧 |𝑧′) ∼ N (`𝑧 |𝑧′,E𝑝 [(𝑧 − 𝑧′)2]),
it gives the equation in the third row, where 𝐶 = 1/2 log(2𝜋) + 1/2.
Similarly, the following inequality is obtained:

I(𝑧, 𝑧) ≥ H (𝑧) − 1/2 logE𝑝 [(𝑧 − 𝑧)2] −𝐶 (10)

From Eq. 9 and Eq. 10, the lower bound of their mutual information
(i.e., I(𝑧, 𝑧′) and I(𝑧, 𝑧)) can be estimated by their mean-square
error (MSE) (i.e., (𝑧 − 𝑧′)2 and (𝑧 − 𝑧)2). The larger the MSE, the
smaller lower bound of the mutual information. The comparisons
of the two MSE on both BYOL and SimSiam methods are shown
in Figure 4. The MSE between 𝑧 and 𝑧 is larger than it between
between 𝑧 and 𝑧′. Therefore, we can obtain that I(𝑧, 𝑧) has a lower
bound thanI(𝑧, 𝑧′). This is to say, suppressing feature increases the
MSE while raising a lower bound of the mutual information. This is
also consistent with the intuition that mutual information decreases
when the similarity of features in different views decreases.

4 EXPERIMENTS
To evaluate the effectiveness of our proposed method, we follow
standard practice on a series of downstream tasks, including food
recognition and food segmentation.

4.1 Self-Supervised Settings
We plug the proposed FeaSC into two contrastive self-supervised
learning frameworks: SimSiam [10] and BYOL [16], forming the
corresponding methods SimSiam+FeaSc and BYOL+FeaSC. For a
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Figure 4: Visualization of the MSE obtained by comparison
of views with and without suppression.

fair comparison, all models using ResNet-50 as the backbone are
trained for 100 epochs with a batch size of 512 during the self-
supervised learning phase. This process takes under three days
to converge using four NVIDIA V100 GPUs.The SGD optimizer is
utilized with momentum set to 0.5 and weight decay set to 1e-4.
The learning rate follows a cosine decay schedule from 0.5 to 0,
with 20 warm-up epochs. The augmentation configurations are
identical to those used in SimSiam. 𝛼 and 𝛽 in Eq. 6 is set to 0.2 and
20, respectively. The networks are pre-trained on Food2K [29] or
ImageNet-1K.

4.2 Food Recognition
Datasets. Experiments are evaluated on four commonly used food
recognition datasets, including ETHZ Food-101 [4], Vireo Food-
172 [8], ISIA Food-200 [27], and ISIA Food-500 [28]. ETHZ Food-
101 contains 101 food categories, Each of which has 1,000 images
including 750 training images and 250 test images. Vireo Food-
172 contains 172 categories with 110,241 images. ISIA Food-200
contains 200 food categories, Each of which has at least 500 images
including 750 training images and 250 test images. ISIA Food-500
consists of 399,726 images with 500 categories. The average number
of images per category is about 800.

Evaluation Protocols. For the evaluation of the self-supervised
model, there are two standard protocols. The first involves train-
ing a linear classifier while keeping the pre-trained weights fixed,
known as linear evaluation. The second consists in training the
entire network parameters and initializing the backbone with the
pre-trained weights, known as fine-tuning evaluation. Data aug-
mentation techniques such as random resize crops, and horizontal
flips are applied during training, while a central crop is used for
inference. Additionally, partial training datasets are used under
various settings (e.g., 10%, 20%, 50%) to compare the pre-training
model’s generalization ability thoroughly.

Experimental results. Table 1 and Table 2 show the experi-
mental results on four public food recognition datasets. Two self-
supervised methods pre-trained on Food2K significantly outper-
form their corresponding ones pre-trained on ImageNet-1K in both
linear and fine-tuning evaluations. For instance, when using the
entire training data for linear evaluation, SimSiam pre-trained on
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ETHZ Food-101 Vireo Food-172
Method Pretrain

Data Evaluation 10% 20% 50% 100% 10% 20% 50% 100%
Supervised* ImageNet-1K Linear 60.37 74.02 77.74 79.90 68.52 73.57 78.44 81.00
Supervised* Food2K Linear 63.83 67.80 71.39 73.49 78.04 79.58 81.75 83.17

BYOL* ImageNet-1K Linear 63.61 68.58 72.42 74.83 68.54 73.61 78.37 80.95
BYOL Food2K Linear 68.31 72.64 76.77 79.66 72.57 77.76 82.24 84.59

BYOL+FeaSC Food2K Linear 72.69 75.92 79.39 81.36 81.83 83.99 86.33 87.86
SimSiam* ImageNet-1K Linear 29.60 31.20 34.11 39.26 12.49 14.84 21.08 26.96
SimSiam Food2K Linear 54.01 59.66 66.08 70.10 50.31 59.46 71.37 76.89

SimSiam+FeaSC Food2K Linear 61.22 65.66 70.26 73.52 71.27 75.44 79.56 81.58
Supervised* ImageNet-1K Fine-tuning 70.95 76.86 82.51 86.16 71.75 77.58 83.79 87.28
Supervised* Food2K Fine-tuning 74.67 79.03 83.80 87.09 81.56 83.91 86.97 88.91

BYOL* ImageNet-1K Fine-tuning 67.76 74.52 80.85 84.64 68.04 74.90 81.99 85.90
BYOL Food2K Fine-tuning 77.03 81.68 85.85 88.25 81.69 84.58 87.93 89.68

BYOL+FeaSC Food2K Fine-tuning 77.83 81.83 86.21 88.39 84.20 86.59 88.88 90.54
SimSiam* ImageNet-1K Fine-tuning 63.87 73.79 82.19 86.30 63.98 74.85 82.91 86.61
SimSiam Food2K Fine-tuning 73.99 80.07 85.30 87.79 79.14 83.30 86.99 89.22

SimSiam+FeaSC Food2K Fine-tuning 75.37 80.84 85.55 88.20 81.22 83.84 87.05 89.36
Table 1: Top-1 accuracy (%) of the different methods with four proportions on ETHZ Food-101 and Vireo Food-172. * indicates
using officially provided pre-training parameters while other methods are our own implementations.

ISIA Food-200 ISIA Food-500
Method Pretrain

Data Evaluation 10% 20% 50% 100% 10% 20% 50% 100%
Supervised* ImageNet-1K Linear 47.78 51.58 56.09 58.63 41.38 46.01 50.80 53.71
Supervised* Food2K Linear 46.07 49.37 52.77 54.86 38.72 42.33 46.17 48.59

BYOL* ImageNet-1K Linear 43.05 47.15 51.51 53.89 36.63 40.91 45.61 48.39
BYOL Food2K Linear 44.08 50.70 56.08 59.06 33.18 41.63 48.76 52.55

BYOL+FeaSC Food2K Linear 53.21 56.25 59.93 64.04 45.36 49.22 53.35 55.94
SimSiam* ImageNet-1K Linear 5.66 9.30 14.57 18.18 2.71 4.46 8.33 11.26
SimSiam Food2K Linear 26.13 33.08 43.14 49.02 16.94 22.51 33.01 40.32

SimSiam+FeaSC Food2K Linear 40.93 46.06 51.11 53.99 30.61 37.03 43.31 47.01
Supervised* ImageNet-1K Fine-tuning 47.92 53.60 59.53 63.56 39.57 46.3 53.15 57.94
Supervised* Food2K Fine-tuning 52.64 56.38 61.50 64.59 45.26 49.43 54.85 58.83

BYOL* ImageNet-1K Fine-tuning 46.45 51.97 58.61 62.48 39.82 45.88 52.67 56.89
BYOL Food2K Fine-tuning 55.62 59.10 63.53 66.17 43.09 51.97 56.64 60.07

BYOL+FeaSC Food2K Fine-tuning 56.57 59.86 63.95 66.72 48.57 52.71 57.43 60.73
SimSiam* ImageNet-1K Fine-tuning 43.70 51.57 58.83 64.69 39.07 46.75 54.75 59.54
SimSiam Food2K Fine-tuning 51.67 56.55 62.47 65.63 44.86 50.13 56.03 60.04

SimSiam+FeaSC Food2K Fine-tuning 53.28 57.86 62.82 66.29 46.02 50.90 56.98 60.62
Table 2: Top-1 accuracy (%) of the different methods with four proportions on ISIA Food-200 and ISIA Food-500.

Food2K outperforms it pre-trained on ImageNet-1K by an average
of 35.17% on four datasets: ETHZ Food-101 (30.84%), Vireo Food-172
(49.93%), ISIA Food-200 (30.84%), and ISIA Food-500 (29.06%). These
results are noteworthy because the Food2K dataset contains food
images smaller than the 1.3 million generic images in ImageNet-1K.
The findings suggest that there are significant differences between
food images and generic images. Thereby, there is good potential
for research in self-supervised pre-training of food images.

The proposed methods outperform their corresponding origi-
nal self-supervised methods in both linear and fine-tuning evalu-
ations. Specifically, when using the entire training data for linear
evaluation, the proposed BYOL+FeaSC obtains performance gains

over BYOL by 1.70% on ETHZ Food-101, 3.27% on Vireo Food-172,
4.98% on ISIA Food-200 and 3.39% on ISIA Food-500, while Sim-
Siam+FeaSC improves SimSiam by 3.42% on ETHZ Food-101, 4.69%
on Vireo Food-172, 4.97% on ISIA Food-200 and 6.69% on ISIA Food-
500.When utilizing the complete training data for fine-tuning evalu-
ation, BYOL+FeaSC outperforms BYOL by 0.86% on Vireo Food-172,
0.55% on ISIA Food-200, and 0.66% on ISIA Food-500. Noteworthy,
the proposed BYOL+FeaSC shows a significant improvement over
the supervised method in linear evaluation. When evaluated using
the entire training data, the proposed BYOL+FeaSC outperforms
the supervised method by 7.87%, 4.69%, 9.18%, and 7.35% on ETHZ
Food-101 (73.49% to 81.36%), Vireo Food-172 (83.17% to 87.86%), ISIA
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Method Pretrain
Dataset

Segmentation
Method Evaluation FoodSeg 103 UEC-FoodPix Complete

aAcc mIoU mAcc aAcc mIoU mAcc
Supervised* ImageNet-1K DeeplabV3 Head 24.34 4.46 7.86 23.61 9.92 17.67
Supervised* Food2K DeeplabV3 Head 24.09 4.05 7.43 21.98 8.61 16.34

BYOL* ImageNet-1K DeeplabV3 Head 12.68 0.88 2.13 9.21 1.44 4.00
BYOL Food2K DeeplabV3 Head 17.49 2.67 4.99 19.23 7.15 13.14

BYOL+FeaSC Food2K DeeplabV3 Head 21.08 3.72 6.71 24.00 10.46 19.07
SimSiam* ImageNet-1K DeeplabV3 Head 17.87 2.51 4.85 16.74 5.02 10.53
SimSiam Food2K DeeplabV3 Head 15.81 1.90 3.94 16.80 5.49 11.13

SimSiam+FeaSC Food2K DeeplabV3 Head 20.01 2.96 5.75 16.82 5.54 11.48
Supervised* ImageNet-1K FCN Head 23.27 3.62 6.84 15.83 4.87 10.16
Supervised* Food2K FCN Head 21.89 3.16 6.36 14.77 4.62 9.68

BYOL* ImageNet-1K FCN Head 12.51 0.76 2.04 8.36 0.85 2.38
BYOL Food2K FCN Head 18.84 2.66 5.10 13.98 3.95 7.76

BYOL+FeaSC Food2K FCN Head 21.37 3.44 6.35 16.56 5.63 11.02
SimSiam* ImageNet-1K FCN Head 20.38 3.06 5.88 13.50 3.78 8.07
SimSiam Food2K FCN Head 16.57 1.91 3.98 12.07 2.87 6.25

SimSiam+FeaSC Food2K FCN Head 20.79 3.07 6.04 13.54 3.79 8.17
Supervised* ImageNet-1K DeeplabV3 Fine-tuning 62.96 35.02 47.27 79.90 70.25 80.91
Supervised* Food2K DeeplabV3 Fine-tuning 63.08 35.37 47.32 79.63 70.50 80.37

BYOL* ImageNet-1K DeeplabV3 Fine-tuning 56.25 28.39 40.20 75.65 66.02 76.63
BYOL Food2K DeeplabV3 Fine-tuning 60.86 31.72 43.91 82.08 72.56 83.28

BYOL+FeaSC Food2K DeeplabV3 Fine-tuning 64.14 36.22 48.87 82.61 74.12 84.14
SimSiam* ImageNet-1K DeeplabV3 Fine-tuning 59.54 30.93 42.66 73.46 60.15 72.65
SimSiam Food2K DeeplabV3 Fine-tuning 60.98 31.82 43.78 78.34 68.37 79.17

SimSiam+FeaSC Food2K DeeplabV3 Fine-tuning 63.86 35.68 48.20 82.62 73.98 83.70
Supervised* ImageNet-1K FCN Fine-tuning 59.66 32.77 44.62 73.00 59.85 73.86
Supervised* Food2K FCN Fine-tuning 61.70 33.75 44.97 73.70 61.26 74.74

BYOL* ImageNet-1K FCN Fine-tuning 57.59 27.93 39.31 67.49 52.39 67.78
BYOL Food2K FCN Fine-tuning 59.08 30.80 42.36 73.28 59.54 73.45

BYOL+FeaSC Food2K FCN Fine-tuning 61.30 32.36 44.46 76.54 65.14 78.03
SimSiam* ImageNet-1K FCN Fine-tuning 59.54 30.93 42.66 71.29 56.40 70.91
SimSiam Food2K FCN Fine-tuning 60.98 31.82 43.78 73.80 61.27 74.12

SimSiam+FeaSC Food2K FCN Fine-tuning 62.32 34.49 46.20 76.74 65.07 77.80
Table 3: Evaluation of food segmentation (%) with different methods on FoodSeg 103 and UEC-FoodPix Complete.

Food-200 (54.86% to 64.04%), and ISIA Food-500 (48.59% to 55.94%),
respectively. These experimental results demonstrate the high ex-
pressiveness of the features extracted by the proposed method.

The proposed method exhibits superior performance in linear
evaluation with a small amount of training data. As the amount of
training data decreases, the advantages of the proposed method be-
come increasingly apparent. For example, on Vireo Food-172, using
linear evaluation, SimSiam+FeaSC outperforms SimSiam by 4.69%
(76.89% to 81.58%) in the case of 100% training data, 8.19% (71.37%
to 79.56%) in the 50% case, 15.98% (59.46% to 75.44%) in the 20%
case, and by 20.96% (50.31% to 71.27%) in the 10% case. These results
demonstrate that the proposed method is capable of achieving high
performance even with limited data. This characteristic is critical
for practical use as procuring a significant quantity of labeled food
images is arduous and costly.

4.3 Food Segmentation
Datasets. Comparative experiments of food Segmentation are con-
ducted on FoodSeg103 [42] and UEC-FoodPix Complete [30]. Food-
Seg103 is a western food segmentation dataset with 103 ingredient
classes and 7,118 images, which includes 4,983 images for training
and 2,135 image for testing.UEC-FoodPix Complete is a released
dataset of food image segmentation, which includes 9,000 images
for training and 1,000 image for testing. The images are provided
manually with pixel-wise 103 class labels.

Evaluation Protocols. Similar to evaluation protocols of food
recognition, the two standard evaluation protocols are used. The
first involves training solely the segmentation head network while
keeping the pre-trained weights frozen, known as head evaluation.
The second protocol entails training the entire network, with the
backbone initialized using pre-trained weights and is referred to as
fine-tuning evaluation.

We adopt the segmentation methods FCN [25] and DeepLabv3
[9] for evaluation. We employ the same learning rate schedule
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(”poly” policy), momentum (0.9), and initial learning rate (0.01) as
in previous works. The crop size was set to 512 × 512. To evalu-
ate performance, we used mIOU (mean intersection over union),
mAcc (mean accuracy of each class), and aAcc (accuracy for all pix-
els). mIoU is a standard measurement for semantic segmentation
that evaluates the overlap and the union in inference and ground
truth. mAcc is the mean accuracy of each class. aAcc is a more
straightforward measurement that is the accuracy for all pixels.

Experimental results. Table 3 reports experimental results of
different methods on FoodSeg103 and UEC-FoodPix Complete. The
proposed methods exhibit superior performance when utilizing
identical segmentation techniques in head evaluation compared to
their original self-supervised methods. For example, equipped with
DeeplabV3, the proposed BYOL+FeaSC improves BYOL by 3.59%
aAcc, 1.05% mIoU, 1.72% mACC on FoodSeg103, and its improve-
ments are 4.77% aAcc, 3.31% mIoU, 5.93% mACC on UEC-FoodPix
Complete. The proposed SimSiam+FeaSC utilizing FCN improves
SimSiam by 4.22% aAcc, 1.16% mIoU, 2.06% mACC on FoodSeg103,
and its improvements are 1.47% aAcc, 0.92% mIoU, 1.92% mACC on
UEC-FoodPix Complete.

In fine-tuning evaluation, the proposed methods outperform
their original methods when identical segmentation techniques
are utilized. For instance, equipped with DeeplabV3, the proposed
SimSiam+FeaSC improves SimSiam by 2.88% aAcc, 3.86% mIoU,
4.42% mACC on FoodSeg103, and its gains are 4.28% aAcc, 5.61%
mIoU, 4.53% mACC on UEC-FoodPix Complete. Utilizing FCN, the
proposed BYOL+FeaSC improves BYOL by 2.22% aAcc, 1.56% mIoU,
2.10% mACC on FoodSeg103, and its improvements are 3.26% aAcc,
5.60% mIoU, 4.58% mACC on UEC-FoodPix Complete. In addition,
SimSiam+FeaSC combined with DeeplabV3 outperforms the super-
vised learningmethod by 0.88% (47.32% to 48.20%) and 3.33% (80.37%
to 83.70%) mAcc on the FoodSeg103 and UEC-FoodPix Complete
datasets, respectively. The corresponding results in combination
with FCN are 1.23% (44.97% to 46.20%) and 3.06% (74.74% to 77.80%).
These experiments demonstrate the effectiveness of the proposed
method on downstream segmentation tasks.

4.4 Further Analysis
Ablation study. To validate the effectiveness of the proposed
method BYOL+FeaSC, we conducted ablation experiments and pre-
sented the results in Table 4. The experiments demonstrate that
feature suppression can significantly improve recognition accuracy.
Furthermore, our proposed response-aware localization scheme
can enhance the effect of feature suppression.

Method Food101 Food172 Food200 Food500
w/o S 79.66 84.59 59.06 52.55
LRS 81.00 86.25 60.83 54.73
RS 81.23 87.23 62.13 55.89
Our 81.36 87.86 64.04 55.94

Table 4: Effect of different suppression strategies (%). "w/o S":
without feature suppression, "LRS" : low-response suppres-
sion and "RS": random suppression.

Analysis of the hyper-parameter _. The hyper-parameter _
in Eq. 8 determines the balance between the original contrast term
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Figure 5: The recognition performance of the proposed
method on four food datasets under different _.

Method Params(M) MACs(G)
w/o Suppressing 74.2 16.58

FeaSC 74.3 16.61
Image Suppressing 74.3 24.87

Table 5: Computational complexity of different methods.

and the feature suppression contrast term. Figure 5 shows two key
observations. First, the feature suppression contrast term can sig-
nificantly improve recognition performance. Second, recognition
performance is limited by a reverse U-shaped curve, with the opti-
mal point at the top of the curve. This finding aligns with the theory
of paper [37] that when two views’ mutual information is too high,
it may introduce excessive noise that affects network generalization
performance, conversely, when their mutual information is too low,
there may not be enough signal to support network training.

Computational complexity. We quantitatively compare the
computational complexity of different suppressionmethods, and the
results are shown in Table 5. It can be seen that neither the proposed
FeaSC nor the direct image suppression adds almost no additional
number of parameters. However, comparing MACs, it becomes
clear that the proposed method adds almost no complexity, while
going back to the image for suppression, MACs increase by 50%.
Self-supervised algorithms usually require a lot of computational
resources, and from this perspective, the proposed method is clearly
superior to the image level suppression.

5 CONCLUSION AND FUTUREWORK
In this paper, we explore self-supervised learning on food images
and propose Feature-Suppressed Contrast (FeaSC) to boost self-
supervised food pre-training by excluding comparisons of similar
informative contents. The proposed FeaSC leverages a response-
aware scheme to identify salient features in an unsupervised man-
ner. By suppressing some salient features in one view while leaving
another contrast view unchanged, the mutual information between
the two views decreases. Consequently, the effectiveness of con-
trast learning for self-supervised food pre-training is improved.
Extensive qualitative and quantitative experiments have verified
the effectiveness of the proposed method. In future work, we will
continue to investigate the performance of our method on other
food datasets, such as Recipe1M. We will also further explore self-
supervised pre-training methods, such as Dino, BarlowTwins, etc.
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